

Innovation and Informed Trading: Evidence from Industry ETFs

Shiyang Huang, Maureen O'Hara, and Zhuo Zhong

> Darden Mayo Center Virtual Seminar April 2020

The rise of ETFs...

- Few recent financial innovations have had the impact of ETFs
 - More than 5,000 exchange-traded products, assets now exceeding those of hedge funds, etc.
- This "disruptive innovation" has had far reaching effects
 - A more liquid, lower-cost alternative to mutual funds
 - A vehicle to access unavailable asset classes
- In this paper we investigate another role the expanded ability to hedge

Industry ETFs

- We focus on the role of industry ETFs and how this innovation affects informed trading and the efficiency of the market.
 - Innovations that facilitate risk-sharing can facilitate arbitrage trading (Allen and Gale [1994]; Dow [1998]; Simsek [2013])
 - While futures or index ETFs can be used to hedge market risk, industry ETFs can better hedge industry risk

Two initial facts

 Industry ETF are more likely to have large short interest than either non-industry ETFs or individual stocks

• Short interest on industry ETFs is not necessarily indicative of bad news.

"long the stock /short the ETF"

- If informed traders use this strategy to profit from positive news, the short leg is the short sale of the industry ETF.
 - A feasible strategy because Industry ETFs have relatively low shorting costs
- Hedge funds likely candidates to adopt this strategy, so we look at hedge fund holdings to capture the long leg of the strategy

General approach

- Construct a long-short activity measure that captures simultaneous spikes in abnormal hedge fund holdings on an underlying stock and abnormal short interest in the stock's parent industry ETF
- Focus on long-short activity prior to earnings announcements, on PEAD, and on how the inception of ETFs affects arbitrage risk.

Main results

- We find that industry ETFs facilitate informed trading
 - Long-short activity surges before positive earnings announcements; effects are stronger for stocks with high industry exposure
 - Large ETF short interest predicts positive earnings surprises among underlying stocks
- We find that Industry ETFs improve market efficiency
- We show important asset pricing effects
 - changes in Δ SIR positively predict ETF returns and % Δ NAV

A vast literature(s)

- Financial innovation Chen (1995); Duffie and Rahi (1995); Cong and Xu (2016); Madhavan (2016); Bhattacharya and O'Hara (2017)
- Empirical ETFs Ben-David et al (2014); Madhavan and Sobczyk (2015);Wermers and Xue (2015); Glosten et al (2017); Israeli et al (2017); Easley, et al (2018)
- Short-selling Boehmer et al (2008); Diether et al (2009); Battalio and Shultz (2011);; Comerton-Forde, et al (2016); Li and Zhu [2018]; Hwang et al (2019); Karmaziene and Sokolovski (2019).

Hypotheses

Hypothesis 1

 If informed investors use a "long-the-stock/short-the-ETF" strategy, then there are simultaneous spikes in hedge funds' long positions on the stock and short interest in the stock's parent ETF before the stock announces a positive SUE.

Hypothesis 1.a

• The relation between long-short activity and positive SUE is more pronounced among stocks with high industry risk exposure.

Hypothesis 2

 If the industry ETF helps investors better trade on firmspecific information, then we expect the industry ETF to reduce PEAD for its constituent stocks.

Industry vs. non-industry ETFs

Long-short and earnings announcements

- For each stock-ETF pair, we define a dummy variable to be 1 if both abnormal hedge fund holdings of the stock and abnormal SIR of the ETF are above 80% percentile of the sample.
- We ran
 - Dummy_LS_{i,s,t}
 - $= \beta_1 Dummy_Pos_SUE_{s,t} + Controls + Year FE$
 - + Quarter $FE + ETF FE + Industry FE + \epsilon_{i,s,t}$,

Long-short and earnings announcements

Dummy =1 if the stock's standardized unexpected earnings are in the top 25% of earnings announcement sample

• We ran

 $Dummy_LS_{i,s,t}$

- $= \beta_1 Dummy_Pos_SUE_{s,t} + Controls + Year FE$
- + Quarter $FE + ETF FE + Industry FE + \epsilon_{i,s,t}$,

Long-short before good news?

+		Panel	A: Full samp	ole
-		Dummy_l	LS based on	Dummy_LS based on
4	DepVar: Dummy Pos SUE	Hedge Fun	ds Holdings	Non-Hedge Funds Holdings
		[1]	[2]	[3]
L	Dummy Pos SUE	0.009***	0.007***	0.002
		(5.79)	(4.97)	(1.16) /
S	ize		-0.007***	-0.007***
			(-6.90)	(-6.63)
E	3 M		0.002	-0.004**
			(1.52)	(-2.62)
I	0		0.048***	0.055***
			(8.27)	(7.01)
E	Reversal		0.001	0.011
			(0.09)	(0.86)
Л	Momentum		0.007**	0.031***
			(2.20)	(3.41)
E	EarnVola		0.000	0.000
			(1.16)	(0.81)
E	EarnPers		-0.000	0.001
			(-0.21)	(0.42)
P	ear FE	Yes	Yes	Yes
9	Otr FE	Yes	Yes	Yes
B	STF FE	Yes	Yes	Yes
\mathcal{I}	ndustry FE	Yes	Yes	Yes
ľ	No. Obs.	379,167	361,813	361,813
A	Adj-R ²	0.0310	0.0357	030678

But maybe not always..

Panel B: Crisis vs. non-crisis period						
DepKar: Dummy_LS	Non-Crisis Period	Crisis Period				
	[1]	[2]				
Dummy_Pos_SUE	0.007***	0.002				
	(4.58)	(1.40)				
Size	-0.007***	-0.009**				
	(-6.95)	(-2.95)				
BM	0.003**	-0.000				
	(2.25)	(-0.04)				
10	0.045***	0.053**				
	(8.62)	(2.76)				
Reversal	0.008	-0.021				
	(1.01)	(-1.16)				
Momentum	0.005**	0.003				
	(2.00)	(0.38)				
EarnVola	0.000	-0.000***				
	(0.13)	(-3.91)				
EarnPers	-0.001	0.005				
	(-1.16)	(0.86)				

Is the effect stronger for stocks with greater industry exposure?

D	Industry Risk Exposure Subsample						
URBY, ar: Dummy_LS	Low	High	Low	High	_		
	[1]	[2]	[3]	[4]	-		
Dummy_Pos_SUE	0.007***	0.012***	0.004***	0.010***			
	(4.72)	(3.80)	(3.37)	(2.75)			
Size			-0.007***	-0.008***			
			(-6.19)	(-6.28)			
BM			-0.001	0.005			
			1.0.705	14 E AN			

Does industry ETF membership reduce PEAD?

Use a propensity matching score/ matched sample approach to control for membership differences

• We ran

 $CAR(1,k)_{s,t} = \beta_1 SUE_{Rank_{s,t}} + \beta_2 Dummy_{Member_{s,t}} + \beta_3 SUE_{Rank_{s,t}} \times Dummy_{Member_{s,t}} + Controls + Year FE + Quarter FE + Industry FE + \epsilon_{s,t},$

r and b. reegression in the matched sample									
<u>DepKar:</u>	CAR(1,30)	CAR(1,60)					
	[1]	[2]	[3]	[4]					
SUE_Rank	0.007***	0.007***	0.011***	0.012***					
	(12.73)	(12.70)	(14.03)	(14.11)					
Dummy_Member	-0.002*	0.001	-0.013***	-0.005**					
	(-1.79)	(0.79)	(-7.70)	(-2.35)					
$SUE_Rank \times Dummy_Member$	-0.004***	-0.004***	-0.007***	-0.007***					
	(-6.09)	(-5.86)	(-7.26)	(-7.12)					
Size		-0.008***		-0.012***					
		(-10.64)		(-11.00)					
BM		-0.003*		-0.002					
		(-1.89)		(-1.01)					
IO		0.019***		0.022***					
		(8.77)		(6.85)					
# Analysts		0.001***		0.000					
		(2.71)		(0.27)					
IVOL		-0.196***		-0.466***					
		(-2.60)		(-4.34)					
Industry FE	Yes	Yes	Yes	Yes					
Year FE	Yes	Yes	Yes	Yes					
Qtr FE	Yes	Yes	Yes	Yes					
N. 04	440.000								
No. Obs.	119,832	118,661	119,832	118,661					
Adj-R ²	0.0047	0.0072	0.0055	0.0084					

Panel B: Regression in the matched sample

Is this effect due to the ETF?

- A diff-in-diff approach to look at L-S activity around earnings announcements in the two year window around ETF inception
 - Assign member stocks into treatment (high industry exposure) and control groups (lower industry exposure). We create a pseudo-ETF to capture before period
 - Control and target groups have similar PEAD reaction in the year before ETF inception but very different after – big reductions in High PEAD

Arbitrage risk

- Arbitrage risk measures the extent a stock' return variation can be hedged by substitute stocks. (seeWurgler and Zhuravskaya (2002)
 - For each stock, pick three closest substitutes
 - Conduct diff-in-diff on residual variance before and after ETF inception

Result – Inception of IETF leads to a meaningful reduction in arbitrage risk, and it greater for pair stocks with higher shorting costs.

Predicable returns and IETF short interest

- We have shown that:
 - Industry ETFs have greater extreme short interest than other ETFs
 - This larger short interest is due to hedging (non-crisis)
 - "long the stock/short the ETF" strategy
- One asset pricing implication:

Extreme short interest should create a temporary price impact in the IETF — leading to predictable IETF returns

- We construct a long-short portfolio based on 3 IETF monthly ∆SIR portfolios
 - We long the ETF in highest one and short the ETF in the lowest one.
- Applying a similar approach to stocks results in a negative 40 basis pt return

Short interest and future returns

Panel A.I. Performance of industry ETF portionos sorted by ASTR, based on ETF returns								
	Excess Returns		CAPM alpha		FF3 alpha		FFC4 a	ilpha
	[1]		[2]		[3]		[4]	
	Estimate	T-stat.	Estimate	T-stat.	Estimate	T-stat.	Estimate	T-stat.
Bottom 30%	1.11	3.02	-0.31	-4.63	-0.25	-4.31	-0.23	-4.19
Mid 40%	1.30	3.71	-0.09	-1.19	-0.04	-0.60	-0.03	-0.43
Тор 30%	1.37	3.78	-0.05	-0.54	0.00	0.02	0.02	0.17
Top - Bottom	0.26	2.81	0.26	2.77	0.25	2.69	0.25	2.59

anel A.1: Performance of Industry ETH	portfolios sorted by <i>ASIR</i> , based on ETF return
---------------------------------------	--

Panel A.2: Performance of Industry ETF portfolios sorted by *ASIR*, based on ETF NAV change

	Excess Returns		CAPM alpha		FF3 alpha		FFC4 alpha	
	[1]		[2]		[3]		[4]	
	Estimate	T-stat.	Estimate	T-stat.	Estimate	T-stat.	Estimate	T-stat.
Bottom 30%	0.96	2.56	-0.47	-5.50	-0.42	-5.36	-0.40	-5.40
Mid 40%	1.10	3.08	-0.30	-2.85	-0.26	-2.64	-0.24	-2.60
Top 30%	1.24	3.41	-0.18	-1.78	-0.13	-1.37	-0.12	-1.25
Top - Bottom	0.28	2.84	0.29	2.96	0.28	2.89	0.28	2.81

Improving return predictability

 Is return predictability higher if hedge fund holdings increase contemporaneously with the increase in short selling?

- Define $PosAHF_{i,t}$ to be the number of underlying stocks with positive abnormal hedge funds holdings at month *t* divided by the total number of members in ETF *i*.

Conditional results

		ETF return (%)				
		High Low				
		Pos	AHF	Pos.	AHF	
	Portfolios by <i>ASIR</i>	sset	t-stat.	sset	<i>t-</i> stat.	
	Low	0.84	1.86	1.32	4.05	
Excess Returns	High	1.35	3.13	1.32	4.02	
	High - Low	0.51	2.75	0.00	-0.02	
	Low	-0.74	-3.87	0.10	0.80	
CAPM Alpha	High	-0.20	-0.91	0.05	0.40	
	High - Low	0.54	2.58	-0.05	-0.37	
	Low	-0.67	-3.89	0.15	1.21	
FF3 Alpha	High	-0.13	-0.62	0.09	0.78	
	High - Low	0.54	2.52	-0.06	-0.45	
	Low	-0.62	-3.53	0.15	1.17	
FFC4 Alpha	High	-0.10	-0.50	0.09	0.77	
	High - Low	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-0.06	-0.44		

Portfolios sorted by ∆SIR and a measure of hedge fund abnormal holdings in the stock

Fama - MacBeth Regressions

Panel B: Fama-MacBeth regressions									
	$DepVar: Ret_{t+1}$					$DepVar: \Delta NAV_{t+1}$			
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	
ΔSIR_t	0.030***		-0.091*	-0.07	0.034***		-0.062	-0.048	
	(2.78)		(-1.80)	(-1.49)	(3.14)		(-1.39)	(-1.37)	
PosAHF _t		-0.002	0.000	0.003		0.001	0.002	0.003	
		(-0.21)	(-0.05)	(0.44)		(0.05)	(0.21)	(0.54)	
$\varDelta SIR_t \times PosAHF_t$			0.456**	0.311**			0.357**	0.254**	
			(2.44)	(2.08)			(2.13)	(2.02)	
Intercept	0.013***	0.015***	0.014***	0.017	0.012***	0.013***	0.012***	0.017	
	(3.72)	(4.94)	(4.65)	(1.38)	(3.52)	(4.34)	(4.09)	(1.44)	
Controls	No	No	No	Yes	No	No	No	Yes	

Stock level predictability

<u>DepVar</u> :		$Ret_{s,t+1}$		_
	[1]	[2]	[3]	
$Dummy_LS_{i,s,t}$	0.50***	0.45***	0.27**	
	(3.22)	(3.60)	(2.40)	
$Dummy_LS_{i,s,t} \times Dummy_HighExposure_{i,s,t}$			0.59**	
			(2.13)	
Dummy_HighExposure _{i,s,t}			-0.08	
			(-0.28)	
Intercept	1.48***	1.57**	1.63**	
	(3.57)	(1.98)	(2.12)	
Controls	No	Yes	Yes	_

Stock level predictability

DepVar:		$Ret_{s,t+1}$		
	[1]	[2]	[3]	
$Dummy_LS_{i,s,t}$	0.50***	0.45***	0.27**	
	(3.22)	(3.60)	(2.40)	
$Dummy_LS_{i,s,t} \times Dummy_HighExposure_{i,s,t}$			0.59**	
			(2.13)	
Dummy_HighExposure _{i,s,t}			-0.08	
			(-0.28)	
Intercept	1.48***	1.57**	1.63**	
	(3.57)	(1.98)	(2.12)	
Controls	No	Yes	Yes	

Conclusions

- Industry ETFs appear to be a valuable innovation by facilitating the hedging of industry risk
 - Our paper provides strong evidence of industry ETFs enabling the "long the stock/short the industry ETF" strategy
 - Short interest in industry ETFs is a different animal than short interest in stocks and even other ETFs
 - It appears to be implemented by hedge funds
 - It makes the market more informationally efficient
 - It results in return predictability